Fortran 77 Subroutines for Computing the Eigenvalues of Hamiltonian Matrices I: the Square Reduced Method
نویسندگان
چکیده
This paper describes LAPACK-based Fortran 77 subroutines for the reduction of a Hamiltonian matrix to square-reduced form and the approximation of all its eigenvalues using the implicit version of Van Loan's method. The transformation of the Hamiltonian matrix to a square-reduced form transforms a Hamiltonian eigenvalue problem of order 2n to a Hessenberg eigenvalue problem of order n. The eigenvalues of the Hamiltonian matrix are the square roots of those of the Hessenberg matrix. Symplectic scaling and norm scaling are provided, which, in some cases, improve the accuracy of the computed eigenvalues. We demonstrate the performance of the subroutines for several examples and show how they can be used to solve some control-theoretic problems.
منابع مشابه
Fortran 77 Subroutines for Computing the Eigenvalues of Hamiltonian Matrices II
This article describes Fortran 77 subroutines for computing eigenvalues and invariant subspaces of Hamiltonian and skew-Hamiltonian matrices. The implemented algorithms are based on orthogonal symplectic decompositions, implying numerical backward stability as well as symmetry preservation for the computed eigenvalues. These algorithms are supplemented with balancing and block algorithms, which...
متن کاملComputing the Matrix Geometric Mean of Two HPD Matrices: A Stable Iterative Method
A new iteration scheme for computing the sign of a matrix which has no pure imaginary eigenvalues is presented. Then, by applying a well-known identity in matrix functions theory, an algorithm for computing the geometric mean of two Hermitian positive definite matrices is constructed. Moreover, another efficient algorithm for this purpose is derived free from the computation of principal matrix...
متن کاملA mathematically simple method based on denition for computing eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices
In this paper, a fundamentally new method, based on the denition, is introduced for numerical computation of eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices. Some examples are provided to show the accuracy and reliability of the proposed method. It is shown that the proposed method gives other sequences than that of existing methods but they still are convergent to th...
متن کاملFORTRAN 77 Subroutines for the Solution of Skew-Hamiltonian/Hamiltonian Eigenproblems - Part II: Implementation and Numerical Results
Skew-Hamiltonian/Hamiltonian matrix pencils λS −H appear in many applications, including linear quadratic optimal control problems, H∞-optimization, certain multi-body systems and many other areas in applied mathematics, physics, and chemistry. In these applications it is necessary to compute certain eigenvalues and/or corresponding deflating subspaces of these matrix pencils. Recently develope...
متن کاملSLICOT Working Note 2013-3 MB04BV A FORTRAN 77 Subroutine to Compute the Eigenvectors Associated to the Purely Imaginary Eigenvalues of Skew-Hamiltonian/Hamiltonian Matrix Pencils
We implement a structure-preserving numerical algorithm for extracting the eigenvectors associated to the purely imaginary eigenvalues of skew-Hamiltonian/Hamiltonian matrix pencils. We compare the new algorithm with the QZ algorithm using random examples with di erent di culty. The results show that the new algorithm is signi cantly faster, more robust, and more accurate, especially for hard e...
متن کامل